

RSK "ROBINSON - SCHENSTED - KNUTH":

First version (Robinson):

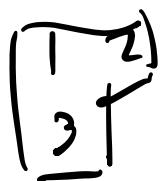
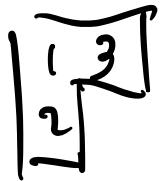
S_n = symmetric group.

A partition $\lambda \vdash h$ is one with

$$\sum \lambda_i = h$$

A standard tableau of shape λ is a filling of the Young diagram by integers $\{1, 2, \dots, h\}$ rows calls strictly increase, each number appears exactly once

SYT for $\lambda = (2, 1)$



There is an irr. rep'n of S_h

parametrized by λ and $\dim(\pi_{\lambda}^{S_h}) = \# \text{ of SYT of shape } \lambda$.

THEOREM (RSK): THERE IS A BIJECTION
 S_n AND PAIRS OF SYT OF SAME
 SHAPE $\lambda, \lambda \vdash \lambda$.

S_3 THREE SHAPES:

$$(3) \quad \begin{array}{|c|c|c|} \hline 1 & 2 & 3 \\ \hline \end{array} \quad \dim \Pi_{(3)}^{S_3} = 1$$

TRIVIAL REP

$$(1,1,1) \quad \begin{array}{|c|c|} \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline \end{array} \quad \text{SIGN REP.}$$

$$(2,1) \quad \begin{array}{|c|c|} \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline \end{array} \quad \begin{array}{|c|c|} \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline \end{array} \quad \text{IRR. OF DEGREE 2.}$$

REF: LIE GROUPS BOOK CH. 37

FOR PARAMETERIZATION OF REPS OF S_n
 BY PARTITIONS. BOOK OF SAGAN FOR
 A DIFFERENT APPROACH.

I WILL EXPLAIN THE ALGORITHM TODAY

THEOREM RSK: THERE IS A
BIJECTION BETWEEN WORDS OF LENGTH
 n IN ALPHABET $\{1, 2, \dots, n\}$ AND
PAIRS (T_1, T_2) OF TABLEAUX OF SHAPE $\lambda \vdash \kappa$
 T_1 IS SSYT AND T_2 A SYT.

THEOREM RSK: THERE IS A BIJECTION
BETWEEN $n \times n$ MATRICES IN $\mathbb{N} = \{0, 1, 2, \dots\}$
WITH PAIRS OF SSYT

(T_1, T_2) OF SAME SHAPE
 T_1 IN $\{1, 2, \dots, n\}$
 T_2 IN $\{1, 2, \dots, n\}$.

SEE FULTON, YOUNG TABLEAUX FOR RSK
AND CONNECTION WITH GEOMETRY.

CRYSTAL CONNECTION: THERE ARE
DIFFERENT WAYS OF EMBEDDING \mathbb{B}_λ
CRYSTAL OF TABLEAUX IN $\mathbb{B}_0 \oplus \dots \oplus \mathbb{B}_n$.

TO UNDER THIS SETUP IDEAS OF KNOTH
LAUREAU, SCHÜTTENBERGER BECOMING IMPORTANT.
CRYSTALS GIVE A GOOD FRAMEWORK FOR
THIS.

SCHENKED INSERTION:

SUPPOSE WE HAVE A SSYT T (ROWS: WEAKLY
INCREASING)
AND WE HAVE ANOTHER
ENTRY THAT WE WANT TO
ADD TO IT TO OBTAIN A TABLEAU T' .
(ADD ONE BOX TO YOUR DIAGRAM.)

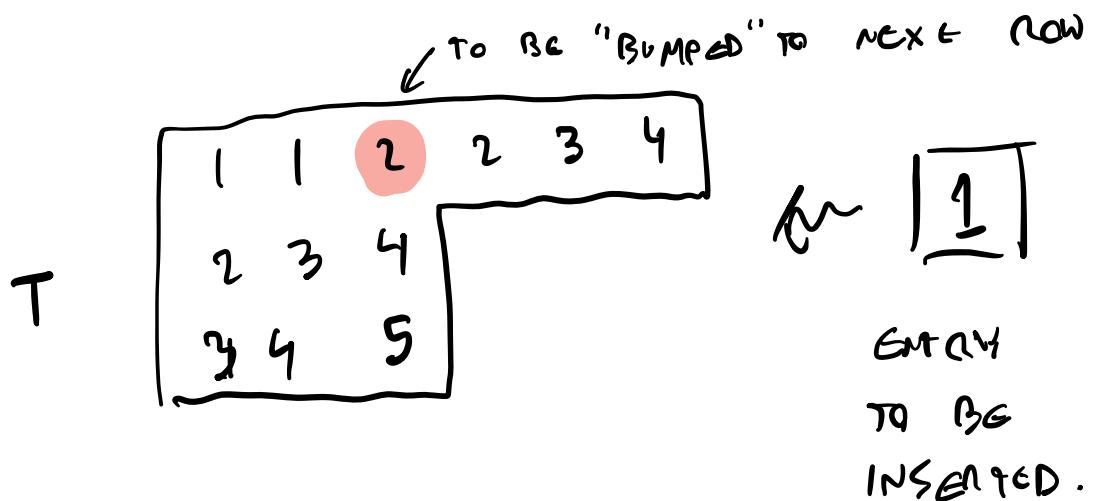
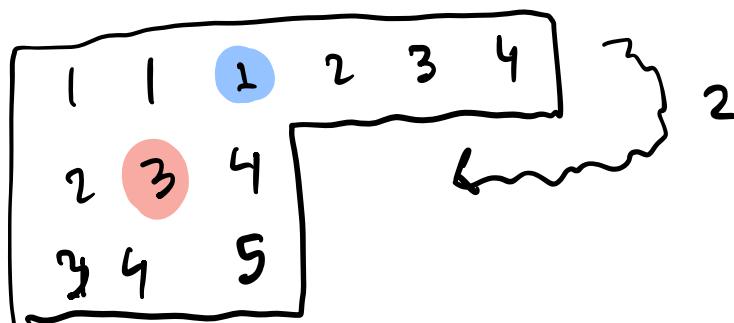
LET j BE THE ENTRY WE WANT
TO INSERT.

IF $j \geq$ FIRST ENTRY IN FIRST ROW,
PUT IT AFTER THAT ENTRY,
THEN STOP.

IF NOT, FIND THE LAST ENTRY THAT

IS LARGER THAN j , REPLACE
 IT BY j , TAKE THE ENTRY
 THAT IS "BUMPED" AND INSERT
 IT INTO SECOND ROW.

CONTINUE.



1	1	2	2	3	4
2	2	4			
3	4	5			

3

1	1	2	2	3	4
2	2	4			
3	3	5			
4					

ANSWER
T ← j

ANOTHER EXAMPLE :

1	1	2	2	3	4
2	3	4			
3	4	5			

for $\underline{3}$

1	2	2	3	4
2	3	4	4	
3	4	5		

SKETCHED INSERTION.

RSK: BISECTION BETWEEN WORDS

i_1, i_2, \dots, i_h $i_1, \dots, i_h = \{1, 2, \dots, n\}$

IN ALPHABET $\{1, \dots, n\}$.

AND PAIRS OF TABLEAUX OF SAME SHAPE

$\lambda \vdash \mu$. FIRST TABLEAU T_1 IS SSYT

IN $\{1, 2, \dots, n\}$

AND T_2 IS SYT IN $\{1, 2, \dots, \mu\}$.

ALGORITHM: TO OBTAIN T_1 , BUILD
UP T_1 BY SUCCESSIVELY INSERTING

i_1, i_2, \dots, i_k . T_2 will be discussed later.

EXAMPLE:

32131223

$$\begin{array}{l}
 \text{① } \sim 3 \\
 \text{② } \boxed{3} \sim 2 \\
 \text{③ } \boxed{\frac{2}{3}} \sim 1 \\
 \text{④ } \boxed{-\frac{1}{2}} \sim 3
 \end{array}
 \quad
 \begin{array}{l}
 \checkmark \quad \boxed{\begin{array}{c|c} 1 & 3 \\ \hline 2 & \\ \hline 3 & \end{array}} \sim 1 \\
 \boxed{\begin{array}{c|c} 1 & 2 & 2 \\ \hline 2 & 3 & \\ \hline 3 & & \end{array}} \sim 3
 \end{array}
 \quad
 \begin{array}{l}
 \cdot \quad \boxed{\begin{array}{c|c} 1 & 1 \\ \hline 2 & 3 \\ \hline 3 & \end{array}} \sim 2 \\
 \boxed{\begin{array}{c|c} 1 & 1 & 2 \\ \hline 2 & 3 & \\ \hline 3 & & \end{array}} \sim 2
 \end{array}$$

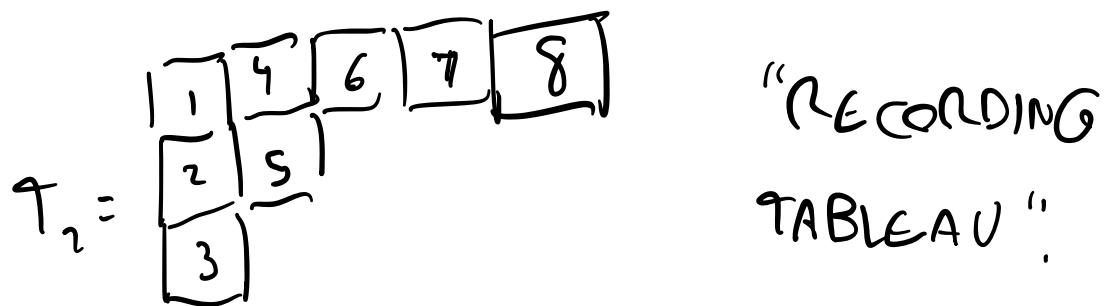
$T_1:$
$$\begin{bmatrix} 1 & 1 & 2 & 2 & 3 \\ 2 & 3 & \hline 3 \end{bmatrix}$$
 NOT ENOUGH INFO
 to reconstruct
 3 2 1 3 1 2 2 3 .

WE SUPPLEMENT T, BY A "RECORDING TABLEAU"

THE RECORDING TABLEAU HAS SAME SHAPE

$\lambda = (5, 2, 1)$ IN EXAMPLE AND RECORDS

LOCATION OF THE BOXES IN ORDER THEY
WERE ADDED



THERE IS ENOUGH INFORMATION IN (T_1, T_2)
TO RECONSTRUCT THE WORD.

Corollary: $n^h = \# \text{ WORDS}$

$$= \sum_{\lambda \vdash n} \# \left\{ \begin{array}{l} \text{SYT OF} \\ \text{SHAPE } \lambda \end{array} \right\} \# \left\{ \begin{array}{l} \text{SYT IN} \\ \{1, 2, \dots, h\} \end{array} \right\}.$$

$$= \sum_{\lambda \vdash n} (\dim \Pi_{\lambda}^{GL(n)}) (\dim \Pi_{\lambda}^{S_h}).$$

INTERPRETATION:

$$\underbrace{\mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n}_{n \text{ TIMES}} = \bigoplus_{\lambda \vdash n} \pi_{\lambda}^{GL(n, \mathbb{C})} \otimes \pi_{\lambda}^{S_n}$$

AS $GL(n, \mathbb{C}) \times S_n$ MODULES.

SCHUR WERL DUALITY.

[REF: MY LIE GROUPS BOOK]

CH. 34 - 37

IF $w = i_1, \dots, i_n$ IS A PERMUTATION
MEANING i_1, \dots, i_n ARE $1, 2, \dots, n$
IN SAME ORDER (AND $n = h$).

CLEARLY T_i IS ALSO A SYT.

MAGIC: IF $\sigma \rightsquigarrow (T_1, T_2)$
 $\sigma^{-1} \rightsquigarrow (T_2, T_1)$

NEXT TIME: RSK AND CRYSTALS.

ANOTHER REFERENCE

KNUTH; THE ART COMPUTER PROGRAMMING.

RSK \rightsquigarrow SPANNING TREES, LABELED TREES.